Cambridge International AS \& A Level

CANDIDATE NAME

CENTRE

NUMBER

\square CANDIDATE NUMBER \square

CHEMISTRY

9701/34
Paper 3 Advanced Practical Skills 2
October/November 2022
2 hours
You must answer on the question paper.
You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 40
- The number of marks for each question or part question is shown in brackets []
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

For Examiner's Use	
1	
2	
3	
Total	

This document has 12 pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.
Show your working and appropriate significant figures in the final answer to each step of your calculations.

1 You are to determine the enthalpy change for a metal displacement reaction using a known volume and concentration of copper(II) sulfate and an excess of powdered zinc.

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

FB 1 is $0.80 \mathrm{~mol} \mathrm{dm}^{-3}$ copper(II) sulfate, CuSO_{4}.
FB 2 is zinc, Zn .
(a) Method

- Weigh the container with FB 2. Record the mass.
- Support the cup in the $250 \mathrm{~cm}^{3}$ beaker.
- Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to transfer $30.0 \mathrm{~cm}^{3}$ of FB 1 into the cup.
- Place the thermometer in the solution. Measure and record the initial temperature of the solution. This is the temperature at time zero, $t=0$.
- Start timing and do not stop the clock until the whole experiment has been completed.
- Measure and record the temperature of the solution every half minute for 2 minutes.
- At time $t=2 \frac{1}{2}$ minutes tip all the FB 2 into the solution and stir the mixture.
- Measure and record the temperature of the mixture at $t=3$ minutes and every half minute until $t=9$ minutes. Stir the mixture between thermometer readings.
- Weigh the container with any residue of FB 2. Record the mass.
- Calculate and record the mass of FB 2 added to the solution.

Results

time $/$ minutes	0	$\frac{1}{2}$	1	$1 \frac{1}{2}$	2	$2 \frac{1}{2}$	3	$3 \frac{1}{2}$	4
temperature $/{ }^{\circ} \mathrm{C}$									

I	
II	
III	
IV	

time $/$ minutes	$4 \frac{1}{2}$	5	$5 \frac{1}{2}$	6	$6 \frac{1}{2}$	7	$7 \frac{1}{2}$	8	$8 \frac{1}{2}$	9
temperature $/{ }^{\circ} \mathrm{C}$										

	T							T		T	T	T	,		\square	T		T		\square	T		-			T		T		T	-	-	\square		T	T		\square	T		\square	T
																							-																			

(b) (i) Plot a graph of temperature on the y-axis against time on the x-axis on the grid. The scale for temperature should extend $5^{\circ} \mathrm{C}$ above your highest recorded temperature. You will use this graph to determine the theoretical maximum temperature rise at $2 \frac{1}{2}$ minutes.
(ii) Draw two lines of best fit through the points on your graph. The first line should be for the temperature before adding FB 2 and the second for the cooling of the mixture.

Extrapolate the two lines to $2 \frac{1}{2}$ minutes. Draw a vertical line at $2 \frac{1}{2}$ minutes. Determine the theoretical rise in temperature at this time.
theoretical rise in temperature at $2 \frac{1}{2}$ minutes $=$ ${ }^{\circ} \mathrm{C}$ [2]

(c) Calculations

(i) Calculate the amount, in mol, of copper(II) sulfate in FB 1 added to the cup in (a).

$$
\text { amount of } \mathrm{CuSO}_{4}=
$$

\qquad mol [1]
(ii) Show that the amount of zinc you added was in excess.
(iii) Use your answer to (b)(ii) to calculate the heat energy, in joules, given out when FB $\mathbf{2}$ is added to FB 1.
heat energy =
(iv) Calculate the enthalpy change of reaction, ΔH_{r}, for the reaction carried out in (a). Show your working.

$$
\Delta H_{\mathrm{r}}=\underset{\text { sign }}{\text { _.... }} \underset{\text { value }}{\text {........................ }} \mathrm{kJ} \mathrm{~mol}^{-1}
$$

(d) A student carries out two further experiments using method (a). In the first experiment, FB 1 is made using a fresh sample of hydrated copper(II) sulfate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
In the second experiment, FB 1 is made using an old sample of hydrated copper(II) sulfate.
The same mass of solid is used to make the solutions in these experiments.
In the second experiment, the student obtains a value for ΔH_{r} that is $10.7 \mathrm{kJmol}^{-1}$ greater in magnitude than the value from the first experiment.

Suggest what may be deduced about the formula of the old sample of hydrated copper(II) sulfate.

The water of crystallisation is greater than 5.	
The formula, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, is correct.	
The water of crystallisation is less than 5.	

Tick the appropriate box and explain your answer.
\qquad
\qquad
\qquad

2 Many metal carbonates, such as copper(II) carbonate, exist as basic carbonates. These are a combination of the metal carbonate and a base of the metal.

A bottle is labelled copper(II) carbonate, CuCO_{3}. You will carry out a gravimetric experiment to see whether the formula given is correct.

$$
\mathrm{CuCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CuO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

FB 3 is copper(II) carbonate and may have the formula CuCO_{3}.
(a) Method

- Weigh a crucible with its lid. Record the mass.
- Add $1.50-1.80 \mathrm{~g}$ of FB 3 to the crucible.
- Weigh the crucible and lid with FB 3. Record the mass.
- Place the crucible on the pipe-clay triangle. Heat the crucible, with the lid on, gently for approximately 1 minute and then strongly for another minute.
- Remove the lid. Heat the crucible strongly for about 4 minutes.
- Replace the lid and leave the crucible and residue to cool for at least 5 minutes.

While the crucible is cooling you may wish to begin work on Question 3.

- Reweigh the crucible and contents with its lid. Record the mass.
- Calculate and record the mass of FB 3 added to the crucible.
- Calculate and record the mass of the residue obtained.

Keep the residue for use in 2(d).

Results

I	
II	
III	
IV	

(b) Calculations

(i) The residue obtained in (a) is copper(II) oxide.

Calculate the amount, in mol, of copper(II) oxide formed on heating.
amount of $\mathrm{CuO}=$ \qquad mol [1]
(ii) Calculate the mass lost on heating the copper carbonate.
mass lost =g

Assuming the formula for FB 3 is CuCO_{3}, calculate the amount, in mol, of carbon dioxide lost on heating.

$$
\text { amount of } \mathrm{CO}_{2}=
$$

(iii) Use your answers to (b)(i) and (b)(ii) to explain whether the formula of FB 3 is CuCO_{3}.
\qquad
\qquad
(c) Another bottle of copper(II) carbonate was labelled basic copper(II) carbonate but part of the label giving the formula had been torn and only showed ' $\mathrm{CuCO}_{3}{ }^{\circ} \mathrm{Cu} . .$. '.

Suggest a formula for basic copper(II) carbonate.
One possible formula for basic copper(II) carbonate is
(d) (i) It is possible that FB 3 did not decompose fully on heating in (a).

Explain how you would change the method used to ensure decomposition was complete.
\qquad
\qquad
(ii) Select a reagent to use to test whether your sample of FB 3 has decomposed completely. reagent \qquad
Carry out your test on the residue from (a). Record your observations. State your conclusion.
\qquad
\qquad

Qualitative analysis

For each test you should record all your observations in the spaces provided.
Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.
Where no change is observed you should write 'no change'.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.
Rinse and reuse test-tubes and boiling tubes where possible.
No additional tests should be attempted.

3 Half-fill the $250 \mathrm{~cm}^{3}$ beaker with water and place it on a tripod and gauze. Heat the water until boiling then switch off your Bunsen burner. This will be your hot water bath.
(a) FB 4 is an aqueous solution containing one cation and one anion, both of which are listed in the Qualitative analysis notes.
FB 5 is an aqueous solution of an organic compound which contains a functional group which is one of an alcohol, an aldehyde or a carboxylic acid.
(i) For each test use a 1 cm depth of FB 4 in a test-tube. Record all your observations.

test	observations
Test 1 Add aqueous ammonia, then	
add aqueous EDTA.	
Test 2 Add a 2 cm depth of aqueous EDTA, then	
add a few drops of aqueous sodium hydroxide, then	
add a 1 cm depth of FB 5 and place the test-tube in the hot water bath.	

test	observations		
Test 3			
Add a strip of magnesium ribbon and			
leave the test-tube for 1 minute.		\quad	
:---			

(ii) The anion in FB 4 is either a halide or an anion containing sulfur.

Select reagents to positively identify the anion.
Carry out your tests and record the reagents used and your observations in a suitable form below.
(iii) Identify the compound in FB 4 from your observations.

The formula of FB 4 is \qquad .
(iv) Give an ionic equation for a reaction in Test 3. Include state symbols.
(b) Reheat your water bath to boiling then switch off your Bunsen burner.

Prepare Tollens' solution for use in Test 1 as follows:
Place a $\frac{1}{2} \mathrm{~cm}$ depth of aqueous silver nitrate in a test-tube. Add 1 or 2 drops of aqueous sodium hydroxide to form a brown precipitate. Shake the tube then add aqueous ammonia dropwise with shaking until the precipitate just dissolves.

When you have completed Test 1 pour the contents of the test-tube down the sink with plenty of water and rinse the test-tube.
(i) Use a 1 cm depth of FB 5 in a test-tube for each of the following tests.

test	observations
Test 1 Add a 1 cm depth of Tollens' solution and place the test-tube in the hot water bath.	
Test 2 Add 1 or 2 drops of acidified aqueous potassium manganate(VII) and place the test-tube in the hot water bath.	
Test 3 Add a 1 cm depth of aqueous sodium carbonate.	

(ii) FB 5 contains a functional group which is either an alcohol, an aldehyde or a carboxylic acid.

State which functional group is present. Explain your answer.
\qquad
\qquad
[Total: 14]

Qualitative analysis notes

1 Reactions of cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on warming	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is observed unless $\left[\mathrm{Ba}^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. unless $\left[\mathrm{Ca}{ }^{2+}(\mathrm{aq})\right]$ is very low	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II), $\mathrm{Cu}^{2+}(\mathrm{aq})$	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), $\mathrm{Mn}{ }^{2+}(\mathrm{aq})$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

anion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream/off-white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives pale yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; decolourises acidified aqueous KMnO_{4}
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids); gives white ppt. with high $\left[\mathrm{Ca}^{2+}(\mathrm{aq})\right]$
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO_{4}
thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$	gives off-white/pale yellow ppt. slowly with H^{+}

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

4 Tests for elements

element	test and test result
iodine, I_{2}	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Faraday constant	$F=9.65 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
electronic charge	$e=-1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\mathrm{m}}=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at s.t.p. $(101 \mathrm{kPa}$ and 273 K$)$ $V_{\mathrm{m}}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at room conditions
ionic product of water	$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\left(\right.$ at $\left.298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)\right)$
specific heat capacity of water	$c=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\left(4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right)$

The Periodic Table of Elements

	$\stackrel{\infty}{\sim}$					岕 \times ¢	® 두니ํ	
	$\stackrel{\rightharpoonup}{*}$		のレ			®ット		
	\bullet		$\infty \bigcirc ⿳ 亠 丷 厂 彡$					
	$\stackrel{6}{\square}$		$\wedge \boldsymbol{Z}$ 耪号号	$\stackrel{\sim}{\sim}$			毋 ¢ ¢ 镸	
	\pm		－$\bigcirc \stackrel{\text { ¢ }}{\text { ¢ }}$			is ¢ ¢ $\stackrel{\substack{\infty \\ \sim}}{ }$		
	$\stackrel{\sim}{\square}$		$\bigcirc \sim \sim$	$\mathfrak{C l}$				을 气言
				$\stackrel{\sim}{\sim}$				
				F				표
				の			スも镸管	
				∞				
				\wedge		\％○－豪，		
				\bullet	İ \sim ¢	和		
				\llcorner		于 은 흘웅	～ロ	员 음 長
				－				
				m				
	\sim		$+\underset{\infty}{\infty}$					® ¢ ¢［
	－							

\therefore 成	
8 8．	
	88.
¢ ¢ ¢	\＆¢ ¢ Ej
	のロロ
$\text { in } \begin{gathered} \text { a } \\ \hline \end{gathered}$	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cambridgeinternational．org after the live examination series．

